All-relevant feature selection using multidimensional filters with exhaustive search
نویسندگان
چکیده
منابع مشابه
All-relevant feature selection using multidimensional filters with exhaustive search
This paper describes a method for identification of the informative variables in the information system with discrete decision variables. It is targeted specifically towards discovery of the variables that are non-informative when considered alone, but are informative when the synergistic interactions between multiple variables are considered. To this end, the mutual entropy of all possible k-t...
متن کاملThe All Relevant Feature Selection using Random Forest
In this paper we examine the application of the random forest classifier for the all relevant feature selection problem. To this end we first examine two recently proposed all relevant feature selection algorithms, both being a random forest wrappers, on a series of synthetic data sets with varying size. We show that reasonable accuracy of predictions can be achieved and that heuristic algorith...
متن کاملEmbedded all relevant feature selection with Random Ferns
Many machine learning methods can produce variable importance scores expressing the usability of each feature in context of the produced model; those scores on their own are yet not sufficient to generate feature selection, especially when an all relevant selection is required. Although there are wrapper methods aiming to solve this problem, they introduce a substantial increase in the required...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملFeature Selection and Ranking Filters
Many feature selection and feature ranking methods have been proposed. Using real and artificial data an attempt has been made to compare some of these methods. The "feature relevance index" used seems to have little effect on the relative ranking. For continuous features discretization and kernel smoothing are compared. Selection of subsets of features using hashing techniques is compared with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2020
ISSN: 0020-0255
DOI: 10.1016/j.ins.2020.03.024